Ein einzelnes Ion als Thermometer

Mögliche Neudefinition der Sekunde durch optische Uhren

Aufbau der optischen Uhr mit Strontium-Ionen: Über Spiegel wird Laserlicht in eine Vakuumkammer geführt, in der es mit gespeicherten Ionen wechselwirkt. Das Ion schwingt dadurch zwischen zwei Zuständen mit einer festen Frequenz, die in geringem Maße von der Temperatur beeinflusst wird.

Optische Atomuhren gelten als die Atomuhren der Zukunft. Sie „ticken“ bereits, aber noch ist die Einheit Sekunde durch Cäsium-Atomuhren definiert. Bei ihnen werden Cäsium-Atome durch Mikrowellenstrahlung angeregt, die Atome oder Ionen bei optischen Uhren dagegen durch optische Strahlung. Die häufigeren Schwingungen pro Zeiteinheit von Licht im Vergleich zur Mikrowelle erlauben eine Bestimmung der Frequenz dieser Atomuhren mit weit höherer Genauigkeit.

Optische Atomuhren beruhen auf Elektronenübergängen in Atomen oder Ionen. Solche Übergänge heißen auch Quantensprünge, weil dabei ein Elektron von einem Energieniveau auf ein anderes springt. Die Frequenz der Strahlung, die bei einem solchen Übergang entsteht, ist eine Naturkonstante und lässt sich höchst genau messen. Entscheidend ist dabei, dass die Übergangsfrequenz entweder nicht gestört wird oder dass etwaige kleine Verschiebungen der Frequenz mit hoher Genauigkeit gemessen und dadurch korrigiert werden.

Eine wichtige Ursache für solche Verschiebungen ist die Wärmestrahlung, die von allen Körpern ausgeht, deren Temperatur sich nicht am absoluten Nullpunkt befindet. Eine besonders kritische Quelle von Wärmestrahlung bei optischen Uhren ist die Ionenfalle, die die Ionen für die Interaktion mit dem Laser an einer festen Stelle hält. Um das thermische Feld, das Ionen in einer Hochfrequenzfalle stört, zu bestimmen, basierten bisherige Arbeiten auf aufwendigen Computersimulationen in Kombination mit Präzisions-Temperaturmessungen. Bei einem von der PTB neu entwickelten Verfahren wird stattdessen das gefangene Ion selbst verwendet, um das thermische Feld genau zu charakterisieren. Dazu verglichen die Forscher den Referenzübergang für verschiedene Betriebsmodi mit einer unabhängigen optischen Uhr.

Da der Temperaturanstieg in der Umgebung des Ions auf elektrische Verluste zurückzuführen ist, ermöglicht der Betrieb bei unterschiedlichen elektrischen Leistungen eine Extrapolation auf einen Temperaturanstieg von Null Kelvin. Die Forschenden haben dieses einfache Konzept erfolgreich demonstriert und eine auf 88Sr+-Ionen basierende Uhr mit einer auf 171Yb+-Ionen basierenden Uhr auf 17 Stellen genau verglichen.

Ihr Ergebnis verbessert nicht nur die Kenntnis der 88Sr+-Uhrenfrequenz um einen Faktor 3, sondern hilft auch bei der Bewertung früherer inkonsistenter Bestimmungen dieser Größe. Solche Messungen sind von besonderer Bedeutung, da sie internationale Übereinstimmung und einen kontinuierlichen Übergang bei einer künftigen Neudefinition der Sekunde unter Verwendung eines optischen Referenzübergangs sicherstellen.

Physikalisch-Technische Bundesanstalt PTB

Physikalisch-Technische Bundesanstalt PTB

Bundesallee 100

38116 Braunschweig

Tel.: (0531) 592-0

E-Mail: info@ptb.de

www.ptb.de